NEMU CI

Design and implementation

Goals

e Build testing

o Keeping the main branch green

o Does this PR compile? (GitHub integration)

o Dependencies pinned and updated as part of the code
e Integration testing

o Interact with the guest
o Test on x86-64 and aarch64 - need the ability to do KVM
o Runnable locally as well on central Cl

e Fast turnaround time (sub 20 minutes for a branch build, 15 for PR)
e Cl as code (keep configuration in source tree)
e Cost effective

Implementation overview

e Jenkins instance with master hosted on Azure

e Xx86-64 agents dynamically provisioned using Azure plugin - using machine
class that supports nested KVM

e Dedicated server providing aarch64 instance

e GitHub integration for PRs/branch updates and authentication

e Clinstructions stored in “Jenkinsfile” in source tree

Jenkins Master

e \Well established solution - complex but flexible
e Installed via “off-the-shelf’ appliance

e Plugins in use:

o Azure VM agents
GitHub Authentication
GitHub Branch Source
GitHub
SSH Slaves

O O O O

Jenkins GitHub integration

e Uses “multi-branch”
o Pipeline added for each branch that contains a “Jenkinsfile” in the root
o Pipeline created for each PR created

Branches (13) Full Requests (9)
Name | Last Success Last Failure Last Duration
A
Q ‘O] experiment/automatic-removal 33 min - #371 3mo 14 days-#89 10 min @
A A
v
A
Q 'O' experiment/automatic-removal-candidate 3 mo 4 days - #3 N/A 17 min @
S B
v
A
Q :o: experiment/automatic-removal-rebase-3-1 2 mo 21 days - #1 N/A 10 min @
v

e Repository hooks registered with webhooks for callback
e Use a “system account” as a bot to update status on builds
e Authentication via GitHub - no need for special credentials, authorization via

GitHub usernames or teams

Jenkins Agents

e For integration testing need to run in environment where KVM is available
o For x86-64 use Azure machine class that supports nested KVM. VMs are created on demand
and added as agents
o For aarch64 use a rented dedicated server with persistent agent

e Fast build turnaround

o Custom image used for VM agents with dependencies already preinstalled
o Images used for testing cached in storage bucket in same region as VMs
o Run with high number of VCPUs (16)

Cl as code

e Jenkinsfile stored in root of git repo

e Two forms - declarative (newer) or scripted

e Controls how builds are distributed across nodes (or types of nodes), what
can be done in parallel and what the stages are.

e Stages are split into steps of which there are a large number of options
available (e.g. git operations, integration with storage, notifications, etc)

e Most commonly used step is the shell one

Jenkinsfile

stage ("Builds") {
parallel ('xenial': {
if (!env.BRANCH_NAME.contains("experiment/automatic-removal"™)) {
node ('xenial') {
stage ('Checkout: x86-64") {
checkout scm
}
stage ('Prepare: x86-64") {
sh "sudo apt-get update"
sh "sudo apt-get build-dep -y gemu"
}
stage ('Compile: x86-64") {
sh "SRCDIR=$WORKSPACE tools/build x86_64.sh"
}
stage ('NATS: x86-64") {
sh "SRCDIR=$WORKSPACE tools/CI/run_nats.sh"

NATS

Test suite built in go for testing NEMU

Control over hotplug of devices

SSH into agent

Runs under “go test”

Highly parallel with each VM instance using dedicated files, etc to improve
build turnaround

Conclusion/Proposal

Not a perfect solution but flexible

We (Intel) are happy to setup and maintain a Jenkins Cl PoC

Will help create initial Jenkinsfiles for current repositories

Can mix with other Cl systems, e.g. Travis for a broad spectrum of testing

