
NEMU CI
Design and implementation

Goals
● Build testing

○ Keeping the main branch green
○ Does this PR compile? (GitHub integration)
○ Dependencies pinned and updated as part of the code

● Integration testing
○ Interact with the guest
○ Test on x86-64 and aarch64 - need the ability to do KVM
○ Runnable locally as well on central CI

● Fast turnaround time (sub 20 minutes for a branch build, 15 for PR)
● CI as code (keep configuration in source tree)
● Cost effective

Implementation overview
● Jenkins instance with master hosted on Azure
● x86-64 agents dynamically provisioned using Azure plugin - using machine

class that supports nested KVM
● Dedicated server providing aarch64 instance
● GitHub integration for PRs/branch updates and authentication
● CI instructions stored in “Jenkinsfile” in source tree

Jenkins Master
● Well established solution - complex but flexible
● Installed via “off-the-shelf” appliance
● Plugins in use:

○ Azure VM agents
○ GitHub Authentication
○ GitHub Branch Source
○ GitHub
○ SSH Slaves

Jenkins GitHub integration
● Uses “multi-branch”

○ Pipeline added for each branch that contains a “Jenkinsfile” in the root
○ Pipeline created for each PR created

● Repository hooks registered with webhooks for callback
● Use a “system account” as a bot to update status on builds
● Authentication via GitHub - no need for special credentials, authorization via

GitHub usernames or teams

Jenkins Agents
● For integration testing need to run in environment where KVM is available

○ For x86-64 use Azure machine class that supports nested KVM. VMs are created on demand
and added as agents

○ For aarch64 use a rented dedicated server with persistent agent

● Fast build turnaround
○ Custom image used for VM agents with dependencies already preinstalled
○ Images used for testing cached in storage bucket in same region as VMs
○ Run with high number of VCPUs (16)

CI as code
● Jenkinsfile stored in root of git repo
● Two forms - declarative (newer) or scripted
● Controls how builds are distributed across nodes (or types of nodes), what

can be done in parallel and what the stages are.
● Stages are split into steps of which there are a large number of options

available (e.g. git operations, integration with storage, notifications, etc)
● Most commonly used step is the shell one

Jenkinsfile
stage ("Builds") {

parallel ('xenial': {

if (!env.BRANCH_NAME.contains("experiment/automatic-removal")) {

node ('xenial') {

stage ('Checkout: x86-64') {

checkout scm

}

stage ('Prepare: x86-64') {

sh "sudo apt-get update"

sh "sudo apt-get build-dep -y qemu"

}

stage ('Compile: x86-64') {

sh "SRCDIR=$WORKSPACE tools/build_x86_64.sh"

}

stage ('NATS: x86-64') {

sh "SRCDIR=$WORKSPACE tools/CI/run_nats.sh"

}

}

}

}

NATS
● Test suite built in go for testing NEMU
● Control over hotplug of devices
● SSH into agent
● Runs under “go test”
● Highly parallel with each VM instance using dedicated files, etc to improve

build turnaround

Conclusion/Proposal
● Not a perfect solution but flexible
● We (Intel) are happy to setup and maintain a Jenkins CI PoC
● Will help create initial Jenkinsfiles for current repositories
● Can mix with other CI systems, e.g. Travis for a broad spectrum of testing

