Edge Cloud Discussion

Service Requirement for Edge

Service for Edge:

- User plane services: SAE-GW, UPF
- Low Latency Services: VR, automatic driving
- High Throughput services: AR, Video surveillance
- Services with huge requirement for multicast: IPTV
- High Speed Mobile Services: UAV

Usecase 1: Enterprise Private Network

- Related Technology
 - Edge DC deployment
 - Local Traffic Offloading
 - Distinguish Local Network Access
- Target
 - Inform local private network service
 - Reduce the access latency

Usecase 2: CDN deployment

- Without edge cloud
 - Waste more transmission bandwitdth
 - Increase Core Network
 workload
 - With edge cloud
 - Reduce the access latency
 - Reduce the resource consumption in transmission

Usecase 3: Live Sporting Event

Usecase 4: Scenic Area with AR/VR

- Disadvantage & Problem
 - Lack of innovation
 - Few items for sightseeing
 - Flow charge is too expensive
- Target
 - Reduce the charge with providing the scenic area more economic larger package
 - Enrich the experience of travelers

Usecase 5: Real time data backhaul of Unmanned Aerial Vehicle(UAV)

- Disadvantage & Problem
 - Using UAV's local storage
 - Long backhaul route
 - Bandwidth demand
- Using MEC
 - Use the venue's prepared storage or some others
 - Shorten backhaul route
 - Reduce workload of both core network and backhaul network

Usecase 6: V2X service

- Application Scenario:
 - Driverless
 - Intelligent parking
 - Intelligent traffic and weather reminding
 - Communication between cars
 - V2N V2X V2I V2V V2P
- Difficulties:
 - Very strictly low latency for driverless scenario

Network Structure of China Mobile

Features of Edge Cloud

Edge TIC is quite different from core TIC, especially county-level and Access-levy edge TIC. Features of Edge TIC:

- Limited space and power resource
- Lightweight management
 - Small scale of edge TIC nodes (less then 10 in AP)
 - No need to fully install management component
- Unattended
 - Remote & scattered location of edge TIC nodes
 - Remote orchestration & management are needed
- Resource Heterogeneity
 - Various services: MEC, CDN, 5G-UPF
 - Various infrastructure: VM, container, bare metal
- Acceleration
 - Low-delay, high-bandwidth services
 - FPGA, GPU, TPU

Open Questions for Edge(1/2)

• Hardware:

- Do we need a specific design of hardware for edge?
- Central offices for operations varies a lot. For central offices in AP, specifically designed hardware should be necessary due to limited space and power resources
- OpenStack:
 - Light weight OpenStack is important for Edge
 - Remote provisioning (cell, Multi-region, or remote compute). For each solution, lots of detailed questions will be raised for integration.
- SDN
 - Do we need SDN at Edge?
 - Light weight SDN controller should be necessary for edge
 - How should SDN work with OpenStack in edge, when OpenStack may in a remote mode

Open Questions for Edge(2/2)

Network

- Does Edge still need spine-leaf?
- Storage
 - Do we need distributed storage or disk array necessary for edge? Or we just use local disk
- Container
 - Heterogeneous resources at edge, including VM, container and bare metal
 - How should we manage these resources? Using OpenStack or K8S or both?
- Acceleration
 - Lots of acceleration requirements for service at edge, including GPU, FPGA, smart NIC
 - A unified API for all different acceleration resources is necessary so that we can still have the agility feature for virtualization
- Provisioning and operation
 - Remote provisioning is a must for edge, therefore reliability and disaster recovery is important

Progress in Upstreams

- ETSI MEC ISG
 - Requirement analysis
 - Framework design
 - Deployment of MEC in NFV
 - (http://www.etsi.org/deliver/etsi_gr/MEC/001_099/017/01.01.01_60/gr_MEC017v010101p.pdf)
- OpenStack
 - FEMDC SIG https://wiki.openstack.org/wiki/Fog_Edge_Massively_Distributed_Clouds
 - Tricircle: https://wiki.openstack.org/wiki/Tricircle_before_splitting#Massive_distributed_edge_cloud
 - Cyborg: https://wiki.openstack.org/wiki/Cyborg
- Akraino:
 - code designed for carrier-scale edge computing applications running in virtual machines and containers
 - Code release in 2018Q2
 - https://www.akraino.org/
- ONAP
- K8S
- ODL
- ONOS
- Ceph

Edge cloud proposal for OPNFV

• Purpose for this project:

- Focusing on the NFV Platform integration for Edge cloud.
- Make sure we can have a platform for edge, which can stay homogeneous with core, so that unified orchestration and operation mechanism can be used
- Better trimmed platform to meet the specific need for edge services
- What we can do:
 - Requirement Analysis
 - Analyze and conclude the requirement from multiple services (MEC, CRAN, vCPE, vOLT, vCDN, etc.)
 - Reflect the service requirements into allocation and detail requirement for edge
 - Reflect detail requirement of edge into component requirement (NFVO, VNFM, VIM, Hypervisor, VSW, HW, etc.)
 - Upstream integration
 - Engaged in upstreams
 - Transfer detailed requirement of component to upstreams
 - Promote the work in upstream, and integrate them back into OPNFV releases
 - Focusing on integration issues for edge scenario (e.g. how OpenStack should work with SDN controller in remote compute scenario?)
 - Several release scenarios for Edge
 - Specific testing for Edge

NFV Platform for Edge

Advantage :

- For regional/access TIC, it is not so important to manage the resource
- Multi areas can share the resource

Disadvantage :

- Two layer network, low latency
- SDN GW is TBD

Advantage :

- Unified keystone for certification. Tenants management and resource overview can be done in the regional or local TIC.
- Not strict to the network and latency. IP network is OK.

Disadvantage :

- Regional/access edges will be deployed with unnecessary VIM part.
- Resource share is impossible

Edge Deployment strategy(2/2)

Solution 3: Cell

Advantage :

- Extend the resource pool to 2000+ or even more
- Not so strict to the network and latency. IP network is OK.
- Have some successful cases in IT industry.

Disadvantage :

- Regional/access edges will be deployed with unnecessary VIM part.
- Migration is impossible
- Solution 3 Can not meet the demand of lightweight edge TIC

Solution 4: Light weight OpenStack

Horizon neotron nova		
VNF		VNF
Regional/access edge TIC		
SDN ctrl	SDN GW	/

Advantage :

- With light weight OpenStack services in 1-2 vCPU
- Other CPU resources could be shared with VNFs

Disadvantage :

- Impossible for physical separation of management network and service network
- Performance of light weight OpenStack need to reexamined.